In Danish below

The Rainforest of the Sea - Seagrass and CO2

We have all heard about how the continuous emission of greenhouse gases, including CO2, is a serious problem that results in global warming. But did you know that approx. one third of the CO2 released into the atmosphere is actually absorbed by the ocean? If not for this process, CO2 would instead accumulate in the atmosphere, and the effects of climate change would be much more pronounced on land. However, the uptake of CO2 still has negative consequences for the marine environment, and as CO2 emissions increase, so does the concentration in the ocean, leading to ecological problems such as ocean acidification. Although the increasing emission of CO2 remains a problem that is far from solved, fortunately there are some natural processes that aid in combating it just a little bit. One of these processes is the amazing ability for seagrass to absorb CO2 from the surrounding water masses, and store the carbon away in the seabed below. This process is called carbon sequestration.

In fact, seagrass has a wide range of properties that benefit us in many ways, even though it is not something you often hear about. Meadows of various species of seagrass are found on the soft seabed of coastal areas around the world (except Antarctica). These plants are the only flowering plants that live fully submerged in the marine environment. As mentioned, you may not hear about seagrass very often, despite the fact that they are quite important in many different ecological contexts. Seagrass meadows can be referred to as the 'rainforest of the sea’, and play a huge role in combating climate change because they are responsible for absorbing and binding about 10% of the CO2 found in the sea, despite only making up about 0.2% of the seabed. Seagrass areas thus help to mitigate the consequences of climate change by removing CO2 from the surrounding environment via photosynthesis, after which it is locked in either the plant tissues or in the soft sediment below them, creating large reservoirs in the seabed called ’Blue carbon sinks’. This way, CO2 is prevented from accumulating freely in the sea or in the atmosphere. The storage of carbon in these reservoirs is 35 times faster than in a rainforest, which is why seagrass is actually considered to be more efficient at removing CO2 than rainforests on land!

Although the uptake of CO2 is a very important trait that seagrass possesses, it is not the only one worth mentioning. The plants also help to create a form of structural stability in the environment by acting as a buffer that protects against coastal erosion. Coastal erosion occurs as a result of strong waves, tides, or currents that lead to displacement or loss of sediment or rocks along the coast. The force of the waves is softened by the leaves of the seagrass meadows which reduces erosion. Furthermore, the meadows are also important feeding grounds for many organisms, such as fish, algae, manatees and sea turtles. In addition, there are also many different fish species – including commercially relevant species that utilise the seagrass meadows as breeding grounds or as a place to seek shelter from predators.

However, seagrass, like many other animals and plants, has a number of stressors to which they are increasingly exposed. These stressors are mainly due to global warming causing rising sea levels and temperatures, which contributes to more algae blooms and increased water depth – two factors that reduce the amount of sunlight that can penetrate to the seagrass. As many people know, sunlight is essential for plants to do photosynthesis and thereby create more plant biomass. Increased nutrient input from agriculture and wastewater to coastal water also creates unfavourable conditions for the plants, because an increased amount of nutrients in the water can also cause the water to become so cloudy with algae that again, not enough sunlight can shine through. In order to mitigate increased nutrient input in the water, the Danish government implemented changes in 1985 to reduce the production of nutrients from agriculture and wastewater treatment plants. These regulations resulted in a recovery of eelgrass (a species of seagrass) in 2008 because it helped make the water clearer. But because these rules were repealed in 2015, the population of eelgrass has unfortunately since begun to decline again.

Other human activities such as tourism (snorkeling/diving), boat traffic and fishing trawls can cause physical damage to the seagrass meadows and fragment them, or worse, destroy them completely, resulting in fatal consequences for the many organisms that live there.

In addition to the many traits already mentioned, there is another good reason why we need to take better care of our seagrass meadows. Seagrass is distributed all over the world, and is cheap and easy to study. Therefore, these marine plants are often used in monitoring programs as a type of biological indicator of environmental status. A biological indicator is a living organism that is used to screen the health of the ecosystem in a given environment. As mentioned, seagrass has a number of stressors, which if exposed to, can be detected via the density of the meadows and/or the nitrogen content of their leaves. This means, that because seagrass is sensitive to disturbances like increased water levels, temperature rise, nutrient input etc., and because they have a measurable response to the mentioned stressors, their health is assessed by the monitoring programs to gain information of possible changes occurring in the environment as a result of climate change or human activities.

We know now that seagrass actually has many important functions for the environment and climate, and that the meadows are home to many animal species that are economically relevant. If the seagrass meadows disappear due to increasing human activities, it affects not only ecosystems, but also the fishing industry and coastal areas, which are the livelihood of millions of people globally. If seagrass populations around the world are lost, so are the buffer processes and CO2 reservoirs, and that will potentially have much greater negative consequences than one would otherwise think.


Havets Regnskov - Havgræs og CO2

Vidste du, at ca. en tredjedel af det CO2 der frigives til atmosfæren, faktisk bliver optaget af havet? Hvis ikke der blev optaget noget CO2 af havet, og det hele i stedet ophobede sig i atmosfæren, ville effekterne af klimaforandringerne være meget mere markante på land end de allerede er. Dog har optagelsen af CO2 også negative konsekvenser for det marine miljø. I takt med at der bliver udledt mere CO2, stiger koncentrationen i havet også, hvilket fører til økologiske problemer, som forsuring af havet (dvs. havets ph-værdi falder). Selvom den stigende udledning af CO2 er et problem, som langt fra er løst, findes der nogle naturlige processer, der er med til at bekæmpe det bare en lille smule. En af disse processer er havgræssers fantastiske evne til at optage CO2 fra de omkringliggende vandmasser, og gemme kulstoffet væk i havbunden i en proces der kaldes kulstofbinding

Faktisk har havgræs en lang række af egenskaber, der gavner os på mange måder, selvom det ikke er noget man ofte hører om. Enge af forskellige arter af havgræs finder man på den bløde havbund ved kystnære områder rundt omkring i hele verden (på nær i Antarktis). Disse planter er de eneste dækfrøede planter (planter der blomstrer), som lever fuldt nedsunket i det marine miljø. 

Man hører som sagt måske ikke så ofte om havgræs, selvom de er meget vigtige i mange forskellige økologiske sammenhænge. Havgræsenge kaldes for ’havets regnskove’, og er helt essentielle netop fordi de spiller en kæmpe rolle i forbindelse med bekæmpelsen af klimaforandringer. Disse planter er nemlig ansvarlige for at optage og binde omkring 10% af det CO2 der findes i havet, på trods af kun at udgør omkring 0,2% af havbunden. Havgræsegnene hjælper altså på afbødning af konsekvenserne af klimaforandringer ved at fjerne CO2 fra det omkringliggende miljø via fotosyntese, hvorefter det ’låses fast’ i enten planternes væv eller i den bløde sedimentet under dem. På den måde forhindres CO2 i at ophobe sig frit i havet eller i atmosfæren, og der skabes i stedet store reservoirer i havbunden, som kaldes ’Blue carbon sinks’, hvori det lagres. Lagringen af kulstof i disse reservoirer sker 35 gange hurtigere end i en regnskov, hvilket er årsagen til at havgræs faktisk anses som værende mere effektiv til at fjerne CO2 end regnskovene på land!

Selvom optagelsen af CO2 er en meget vigtig egenskab som havgræs besidder, er det ikke den eneste positive egenskab de har. Planterne hjælper eksempelvis til at danne en form for strukturel stabilitet i miljøet ved at fungere som buffer, der beskytter mod kyst-erosion. Kyst-erosion sker som følge af kraftige bølger, tidevand, strømme eller lignende, der leder til en slags forskydning eller tab af sedimentet eller klipper langs kysten. Ved hjælp af havgræsengenes blade, mindskes bølgernes kræfter og derved reduceres erosionen. Endvidere er engene også vigtige fødesteder for mange organismer, såsom fisk, alger, søkøer og havskildpadder. Derudover er der også mange forskellige fiskearter – heriblandt arter der har kommerciel relevans, som bruger havgræsengene som enten ynglested eller som et sted hvor de kan søge ly fra rovdyr. 

Havgræs har dog, som mange andre dyr og planter, en række stressfaktorer som de i stigende grad udsættes for. Disse stressfaktorer skyldes især klimaforandringer, f.eks. at vandstand og temperatur stiger, hvilket bidrager til flere algeopblomstringer og øget vanddybde – to faktorer der mindsker den mængde af sollys der kan trænge ned til havgræsengene. Som mange ved, er sollys essentiel for at planter kan lave fotosyntese og derved vokse. Øget nærings-input fra landbrug og spildevand til kystnære vandområder skaber også ugunstige forhold for planterne, fordi en øget mængde af næring i vandet også kan medføre, at vandet bliver så uklart af alger, at der igen ikke kan trænge nok sollys ned. For at afbøde øget nærings-input til vandmiljøet, gennemførte den danske regering i 1985 ændringer for at reducere produktionen af næringsstoffer fra landbrug og spildevandsanlæg. Disse reguleringer resulterede i en genopretning af ålegræs (en art af havgræs) i 2008, fordi det medvirkede til at vandet blev mere klart. Men fordi disse regler blev ophævet i 2015, er populationen af ålegræs sidenhen desværre begyndt at falde igen. Menneskelig aktiviteter, som turisme (snorkling/dykning), bådtrafik og fisketrawl kan forårsage fysisk skade på havgræsengene og fragmentere engene, eller i værste fald, ødelægge dem fuldstændigt og derved have konsekvenser for de mange organismer, som lever der.

Der er, udover de årsager der allerede er nævnt, endnu en god grund til, at vi skal passe på vores havgræsenge. Havgræs er stort set udbredt over hele kloden, og er billigt og nemt at undersøge. Derfor anvendes disse marine planter ofte i overvågningsprogrammer som en slags biologisk indikator for miljøets status. En biologisk indikator er en levende organisme, der bruges til at screene økosystemets sundhed i et givent miljø. Havgræs har som nævnt en række stressfaktorer, som hvis de udsættes for, ses på blandt andet tætheden af engene og/eller nitrogen-indholdet i bladene. Det vil sige, fordi havgræsser er følsomme over for forstyrrelser i form af øget vandstand, temperaturstigning, nærings-input og lignende, og har en målbar reaktion på disse stressfaktorer, anvendes deres sundhed af overvågningsprogrammerne til, at sige noget om mulige ændringer, der finder sted i miljøet som følge af klimaforandringer eller menneskelig aktiviteter.

Vi ved nu, at havgræs har mange vigtige funktioner for miljø og klima, og at engene er hjem for mange dyrearter, der ovenikøbet har samfundsøkonomisk relevans. Hvis havgræsengene forsvinder som følge af stigende menneskelige aktiviteter, påvirker det altså ikke kun selve økosystemerne, men også fiskeindustrien og dermed millioner af menneskers livsgrundlag. 

Hvis havgræsbestandene rundt omkring i verden går tabt, da går essentielle buffer-processer og CO2 reservoirs ligeledes tabt, og det vil potentielt have større negative konsekvenser end man ellers lige ville tro. 


References
Applied marine biology bog, 
“About Blue Carbon” https://www.thebluecarboninitiative.org/about-blue-carbon#ecosystems (Visited 6/8/2021)
Bo Riemann et al. “Recovery of Danish Coastal Ecosystems After Reductions in Nutrient Loading: A Holistic Ecosystem Approach” (2016), Estuaries and Coasts, 39:82–97
Olivia Rosane, “Oceans absorb almost 1/3 of global CO2 emissions, but at what cost?” (2019), Ecowatch, 
Image: Benjamin L. Jones via unsplash.com